Цитология. Органоиды эукариотических клеток
Эукариотические клетки
В начале изучения цитологии должно быть ясно, что эукариотические клетки имеют более сложную структуру, чем прокариотические клетки. Органеллы позволяют одновременно выполнять в клетке различные функции. Прежде чем обсуждать функции органелл внутри эукариотической клетки, давайте сначала рассмотрим два важных компонента клетки: плазматическую мембрану и цитоплазму.
Рисунок 1: На этом рисунке показаны типичные животная и растительная клетки.
Плазматическая мембрана
Подобно прокариотам, эукариотические клетки имеют плазматическую мембрану (рис. 2), состоящую из фосфолипидного бислоя со встроенными белками, которые отделяют внутреннее содержимое клетки от окружающей среды.
Фосфолипид - это молекула липида, состоящая из двух цепей жирных кислот и фосфатной группы. Плазматическая мембрана регулирует прохождение некоторых веществ, таких как органические молекулы, ионы и вода, предотвращая прохождение одних для поддержания внутренних условий, при этом активно вводя или удаляя другие. Другие соединения пассивно перемещаются через мембрану.
Рисунок 2. Плазматическая мембрана представляет собой фосфолипидный бислой с внедренными белками. Существуют и другие компоненты, такие как холестерин и углеводы, которые могут быть обнаружены в мембране в дополнение к фосфолипидам и белку.
Плазматические мембраны клеток, которые специализируются на абсорбции, сложены в виде пальцевидных выступов, называемых микроворсинками. Эта складка увеличивает площадь поверхности плазматической мембраны. Такие клетки обычно выстилают тонкий кишечник - орган, поглощающий питательные вещества из переваренной пищи. Это отличный пример соответствия формы функциям конструкции.
Цитоплазма
Цитоплазма включает содержимое клетки между плазматической мембраной и ядерной оболочкой (структура будет обсуждена в ближайшее время). Она состоит из органелл, взвешенных в гелеобразном цитозоле, цитоскелете и различных химических веществах (рис. 1). Несмотря на то, что цитоплазма состоит на 70-80 процентов из воды, она имеет полутвердую консистенцию, которая обеспечивается белками внутри нее.
Однако, белки - не единственные органические молекулы, обнаруженные в цитоплазме. Там же находятся глюкоза и другие простые сахара, полисахариды, аминокислоты, нуклеиновые кислоты, жирные кислоты и производные глицерина. Ионы натрия, калия, кальция и многих других элементов также растворяются в цитоплазме. В цитоплазме происходят многие метаболические реакции, включая синтез белка.
Цитоскелет
Рисунок 3. Микрофиламенты, промежуточные нити и микротрубочки составляют цитоскелет клетки.
Если бы вы удалили все органеллы из клетки, оставались бы только плазматическая мембрана и цитоплазма? Нет. Внутри цитоплазмы все еще будут ионы и органические молекулы, а также сеть белковых волокон, которая помогает поддерживать форму клетки, закрепляет определенные органеллы в определенных положениях, позволяет цитоплазме и везикулам перемещаться внутри клетки и дает возможность одноклеточным организмам передвигаться самостоятельно. В совокупности эта сеть белковых волокон известна как цитоскелет.
Внутри цитоскелета есть три типа волокон: микрофиламенты, также известные как актиновые филаменты, промежуточные филаменты и микротрубочки (рис. 3).
Микрофиламенты являются самыми тонкими из волокон цитоскелета и участвуют в перемещении клеточных компонентов, например, во время деления клеток. Они также поддерживают структуру микроворсинок, обширную складку плазматической мембраны, обнаруженную в клетках, предназначенных для абсорбции. Эти компоненты также распространены в мышечных клетках и отвечают за сокращение мышечных клеток.
Промежуточные филаменты имеют промежуточный диаметр и выполняют структурные функции, такие как поддержание формы клетки и закрепление органелл. Кератин, соединение, укрепляющее волосы и ногти, образует промежуточные волокна одного типа.
Микротрубочки - самые толстые из волокон цитоскелета. Это полые трубки, которые могут быстро растворяться и преобразовываться.
Микротрубочки направляют движение органелл и представляют собой структуры, которые притягивают хромосомы к своим полюсам во время деления клеток. Они также являются структурными компонентами жгутиков и ресничек. В ресничках и жгутиках микротрубочки организованы в виде круга из девяти двойных микротрубочек снаружи и двух микротрубочек в центре.
Центросома - это область около ядра клеток животных, которая функционирует как центр организации микротрубочек. Он содержит пару центриолей, - две структуры, которые лежат перпендикулярно друг другу. Каждая центриоль представляет собой цилиндр из девяти троек микротрубочек.
Центросома реплицируется до деления клетки, и центриоли играют роль в перемещении дублированных хромосом к противоположным концам делящейся клетки. Однако точная функция центриолей в делении клеток не ясна, поскольку клетки, у которых удалены центриоли, все еще могут делиться, а клетки растений, у которых отсутствуют центриоли, способны к делению клеток.
Жгутики и реснички
Жгутики представляют собой длинные, похожие на волосы структуры, которые отходят от плазматической мембраны и используются для перемещения всей клетки (например, сперматозоидов, эвглены). Если у клетки есть жгутик, то как правило их количество колеблется от одного до нескольких.
Однако, когда присутствуют реснички, их обычно много, и они проходят по всей поверхности плазматической мембраны. Это короткие, похожие на волосы структуры, которые используются для перемещения целых клеток (например, парамеций) или перемещения веществ по внешней поверхности клетки (например, реснички клеток, выстилающих фаллопиевы трубы, которые перемещают яйцеклетку к матке, или реснички, выстилающие клетки дыхательных путей, которые перемещают твердые частицы к горлу).
Эндомембранная система
Эндомембранная система (эндо = внутри) - это группа мембран и органелл (рис. 4) в эукариотических клетках, которые работают вместе, чтобы модифицировать, упаковывать и транспортировать липиды и белки. Он включает ядерную оболочку, лизосомы и везикулы, эндоплазматический ретикулум и аппарат Гольджи, о которых мы вскоре поговорим. Хотя технически не внутри клетки, плазматическая мембрана включена в эндомембранную систему, потому что, как вы увидите, она взаимодействует с другими эндомембранозными органеллами.
Ядро
Обычно ядро является наиболее заметной органеллой в клетке. Ядро содержит ДНК клетки в форме хроматина и направляет синтез рибосом и белков. Рассмотрим его подробнее (Рисунок 4).
Рисунок 4. Самой внешней границей ядра является ядерная оболочка. Обратите внимание, что ядерная оболочка состоит из двух фосфолипидных бислоев (мембран) - внешней мембраны и внутренней мембраны - в отличие от плазматической мембраны, которая состоит только из одного фосфолипидного бислоя.
Ядерная оболочка представляет собой структуру с двойной мембраной, которая составляет самую внешнюю часть ядра. И внутренняя, и внешняя мембраны ядерной оболочки представляют собой бислои фосфолипидов.
Ядерная оболочка перемежается порами, которые контролируют прохождение ионов, молекул и РНК между нуклеоплазмой и цитоплазмой.
Чтобы понять хроматин, полезно сначала рассмотреть хромосомы. Хромосомы - это структуры ядра, состоящие из ДНК, наследственного материала и белков. Эта комбинация ДНК и белков называется хроматином.
Хромосомы эукариот представляют собой линейные структуры, у каждого вида есть определенное количество хромосом в ядрах клеток его тела. Например, у человека число хромосом составляет 46, тогда как у дрозофилы число хромосом равно 8.
Хромосомы видны и отличимы друг от друга только тогда, когда клетка готовится к делению. Когда клетка находится в фазах роста и поддержания своего жизненного цикла, хромосомы напоминают размотанный беспорядочный пучок нитей, который и является хроматином.
Эндоплазматический ретикулум
Эндоплазматический ретикулум (ЭР) (рис. 5) представляет собой серию взаимосвязанных мембранных канальцев, которые совместно модифицируют белки и синтезируют липиды. Однако эти две функции выполняются в отдельных областях эндоплазматической сети: шероховатом эндоплазматическом ретикулуме и гладком эндоплазматическом ретикулуме соответственно.
Полая часть канальцев ЭР называется просветом или цистернальным пространством. Мембрана ЭР, представляющая собой бислой фосфолипидов, залитый белками, непрерывна с ядерной оболочкой.
Шероховатый эндоплазматический ретикулум (ШЭР) назван так потому, что рибосомы, прикрепленные к его цитоплазматической поверхности, придают ему вид шипов при просмотре в электронный микроскоп.
Рибосомы синтезируют белки, будучи прикрепленными к ЭР, что приводит к переносу их вновь синтезированных белков в просвет ШЭР, где они претерпевают модификации, такие как сворачивание или добавление сахаров. ШЭР также производит фосфолипиды для клеточных мембран.
Если фосфолипидам или модифицированным белкам не суждено оставаться в ЭР, они будут упакованы в пузырьки и транспортироваться из ШЭР путем отпочкования от мембраны (Рисунок 4). Поскольку шероховатый ЭР участвует в модификации белков, которые будут секретироваться из клетки, его много в клетках, секретирующих белки, таких как печень.
Гладкий эндоплазматический ретикулум (ГЭР) является продолжением ШЭР, но на ее цитоплазматической поверхности мало рибосом или они отсутствуют вовсе (см. Рисунок 4). Функции гладкого ЭР включают синтез углеводов, липидов (включая фосфолипиды) и стероидных гормонов, детоксикация лекарств и ядов, метаболизм алкоголя, и хранение ионов кальция.
Аппарат Гольджи
Рисунок 5. Аппарат Гольджи в этой просвечивающей электронной микрофотографии белой клетки крови виден как стопка полукруглых уплощенных колец в нижней части этого изображения. Рядом с аппаратом Гольджи можно увидеть несколько везикул.
Мы уже упоминали, что пузырьки могут отпочковываться из ЭР, но куда они деваются? Перед достижением конечного пункта назначения липиды или белки в транспортных пузырьках необходимо отсортировать, упаковать и пометить, чтобы они оказались в нужном месте.
Сортировка, маркировка, упаковка и распределение липидов и белков происходит в аппарате Гольджи (также называемом тельцом Гольджи), в серии уплощенных мембранных мешочков (рис. 5).
Аппарат Гольджи имеет принимающую поверхность (cis) рядом с эндоплазматическим ретикулумом и высвобождающую (trans) поверхность на стороне от ЭР, к клеточной мембране. Транспортные пузырьки, которые образуются из ЭР, перемещаются к принимающей стороне, сливаются с ней и выделяют свое содержимое в просвет аппарата Гольджи.
Когда белки и липиды проходят через Гольджи, они претерпевают дальнейшие модификации. Наиболее частая модификация - добавление коротких цепочек молекул сахара. Затем вновь модифицированные белки и липиды маркируются небольшими молекулярными группами, чтобы они направлялись в нужное место назначения.
Наконец, модифицированные и помеченные белки упаковываются в пузырьки, которые отпочковываются с противоположной стороны Гольджи. В то время как некоторые из этих пузырьков, - транспортирующие, откладывают свое содержимое в другие части клетки, где они будут использоваться, другие, секреторные пузырьки, сливаются с плазматической мембраной и высвобождают свое содержимое за пределы клетки.
Количество Гольджи в различных типах клеток снова показывает, что форма следует за функцией внутри клеток. Клетки, которые участвуют в большой секреторной деятельности (например, клетки слюнных желез, которые секретируют пищеварительные ферменты, или клетки иммунной системы, которые секретируют антитела), имеют большое количество аппаратов Гольджи.
В растительных клетках Гольджи играет дополнительную роль в синтезе полисахаридов, некоторые из которых включены в клеточную стенку, а некоторые используются в других частях клетки.
Лизосомы
В клетках животных лизосомы представляют собой «мусоропровод». Пищеварительные ферменты в лизосомах помогают расщеплению белков, полисахаридов, липидов, нуклеиновых кислот и даже изношенных органелл. У одноклеточных эукариот лизосомы важны для переваривания пищи, которую они глотают, и для повторного использования органелл. Эти ферменты активны при гораздо более низком pH (более кислом), чем ферменты, расположенные в цитоплазме. Многие реакции, протекающие в цитоплазме, не могут происходить при низком pH, поэтому преимущество разделения эукариотической клетки на органеллы очевидно.
Лизосомы также используют свои гидролитические ферменты для уничтожения болезнетворных организмов, которые могут проникнуть в клетку. Хороший пример этого - группа белых кровяных телец, называемых макрофагами, которые являются частью иммунной системы вашего тела. В процессе, известном как фагоцитоз, часть плазматической мембраны макрофага инвагинирует (складывается) и поглощает патоген. Инвагинированный участок с патогеном внутри затем отщепляется от плазматической мембраны и становится пузырьком. Везикула сливается с лизосомой. Затем гидролитические ферменты лизосомы уничтожают патоген (рис. 6).
Рисунок 6. Макрофаг фагоцитировал потенциально патогенную бактерию в везикулу, которая затем срастается с лизосомой внутри клетки, так что патоген может быть разрушен.
Везикулы и вакуоли
Везикулы и вакуоли - это мембранные мешочки, которые служат для хранения и транспортировки. Вакуоли несколько крупнее везикул, и мембрана вакуоли не сливается с мембранами других клеточных компонентов. Везикулы могут сливаться с другими мембранами внутри клеточной системы. Кроме того, ферменты в вакуолях растений могут разрушать макромолекулы.
Рисунок 7. Эндомембранная система работает над модификацией, упаковкой и переносом липидов и белков.
Рибосомы
Рисунок 8. Рибосомы состоят из большой субъединицы и малой субъединицы. Во время синтеза белка рибосомы собирают аминокислоты в белки.
Рибосомы - это клеточные структуры, ответственные за синтез белка. При просмотре в электронный микроскоп свободные рибосомы выглядят как кластеры или отдельные крошечные точки, свободно плавающие в цитоплазме.
Рибосомы могут быть прикреплены либо к цитоплазматической стороне плазматической мембраны, либо к цитоплазматической стороне эндоплазматического ретикулума (рис. 8). Электронная микроскопия показала, что рибосомы состоят из больших и малых субъединиц.
Рибосомы - это ферментные комплексы, отвечающие за синтез белка.
Поскольку синтез белка важен для всех клеток, рибосомы находятся практически в каждой клетке, хотя в прокариотических клетках они меньше. Их особенно много в незрелых эритроцитах для синтеза гемоглобина, который участвует в транспортировке кислорода по всему телу.
Митохондрии
Рисунок 9. Эта просвечивающая электронная микрофотография показывает митохондрию, если смотреть с помощью электронного микроскопа.
Митохондрии часто называют «электростанциями» или «энергетическими фабриками» клетки, потому что они отвечают за выработку аденозинтрифосфата (АТФ), основной молекулы, несущей энергию клетки.
Образование АТФ при распаде глюкозы известно как клеточное дыхание. Митохондрии - это органоиды овальной формы с двумя мембранами (рис. 9), которые имеют собственные рибосомы и ДНК. Каждая мембрана представляет собой бислой фосфолипидов, залитый белками.
Внутренний слой имеет складки, называемые кристами, которые увеличивают площадь поверхности внутренней мембраны.
Область, окруженная складками, называется митохондриальным матриксом. Кристы и матрикс играют разные роли в клеточном дыхании.
В соответствии с нашей темой следования форме за функцией важно отметить, что мышечные клетки имеют очень высокую концентрацию митохондрий, потому что мышечным клеткам требуется много энергии для сокращения.
Пероксисомы
Пероксисомы - это маленькие круглые органеллы, окруженные одиночными мембранами. Они проводят реакции окисления, разрушающие жирные кислоты и аминокислоты. Они также выводят токсины из многих ядов, которые могут попасть в организм.
Алкоголь детоксицируется пероксисомами в клетках печени. Побочным продуктом этих реакций окисления является перекись водорода H2O2, которая содержится в пероксисомах, чтобы предотвратить повреждение химическим веществом клеточных компонентов за пределами органелл. Перекись водорода безопасно расщепляется пероксисомальными ферментами на воду и кислород.
Клетки животных против клеток растений
Несмотря на их фундаментальное сходство, между животными и растительными клетками есть поразительные различия (см. Таблицу).
- Клетки животных имеют центриоли, центросомы (обсуждаемые в рамках цитоскелета) и лизосомы, тогда как клетки растений их не имеют.
- У растительных клеток есть клеточная стенка, хлоропласты, плазмодесматы и пластиды, используемые для хранения, и большая центральная вакуоль, тогда как у животных клеток нет.
Клеточная стенка
На рисунке 1, схеме растительной клетки, вы видите структуру вне плазматической мембраны, называемую клеточной стенкой. Стенка клетки представляет собой жесткое покрытие, которое защищает клетку, обеспечивает структурную поддержку и придает форму клетке. Клетки грибов и протистов также имеют клеточные стенки.
В то время как основным компонентом стенок прокариотических клеток является пептидогликан, основной органической молекулой в стенке растительной клетки является целлюлоза (рис. 10), полисахарид, состоящий из длинных прямых цепей единиц глюкозы. Когда информация о питании касается пищевых волокон, это относится к содержанию целлюлозы в пище.
Рисунок 10. Целлюлоза представляет собой длинную цепь молекул β-глюкозы, связанных 1-4 связью. Пунктирные линии на каждом конце фигуры указывают на ряд большего количества единиц глюкозы.
Хлоропласты
Подобно митохондриям, хлоропласты также имеют собственную ДНК и рибосомы. Хлоропласты участвуют в фотосинтезе и могут быть обнаружены в эукариотических клетках, таких как растения и водоросли. При фотосинтезе углекислый газ, вода и световая энергия используются для производства глюкозы и кислорода. В этом основное различие между растениями и животными: растения (автотрофы) способны производить себе пищу, например глюкозу, тогда как животные (гетеротрофы) должны полагаться на другие организмы в качестве органических соединений или источника пищи.
Рисунок 11. Эта упрощенная диаграмма хлоропласта показывает внешнюю мембрану, внутреннюю мембрану, тилакоиды, грану и строму.
Подобно митохондриям, хлоропласты имеют внешнюю и внутреннюю мембраны, но внутри пространства, ограниченного внутренней мембраной хлоропласта, находится набор взаимосвязанных и уложенных друг на друга, заполненных жидкостью мембранных мешочков, называемых тилакоидами (рис. 11). Каждый стек тилакоидов называется грана. Жидкость, заключенная во внутренней мембране и окружающая грану, называется строма.
Хлоропласты содержат зеленый пигмент, называемый хлорофиллом, который улавливает энергию солнечного света для фотосинтеза. Как и в клетках растений, у фотосинтезирующих протистов есть хлоропласты. Некоторые бактерии также осуществляют фотосинтез, но у них нет хлоропластов. Их фотосинтетические пигменты расположены в тилакоидной мембране внутри самой клетки.
Эволюция в действии
Мы упоминали, что и митохондрии, и хлоропласты содержат ДНК и рибосомы. Вы не задумывались, почему? Убедительные доказательства указывают на эндосимбиоз как на объяснение. Симбиоз - это отношения, при которых организмы двух разных видов живут в тесной ассоциации и обычно проявляют особую адаптацию друг к другу.
Эндосимбиоз (эндо- = внутри) - это отношения, в которых один организм живет внутри другого. Эндосимбиотические отношения изобилуют природой. Микробы, вырабатывающие витамин К, например, Escherichia coli, обитают в кишечнике человека. Эти отношения полезны для нас, потому что мы не можем синтезировать витамин К. Это также полезно для микробов, потому что они защищены от других организмов и обеспечивают стабильную среду обитания и обильную пищу, живя в толстом кишечнике.
Ученые давно заметили, что бактерии, митохондрии и хлоропласты похожи по размеру. Мы также знаем, что митохондрии и хлоропласты содержат ДНК и рибосомы, как и бактерии. Ученые считают, что клетки-хозяева и бактерии сформировали взаимовыгодные эндосимбиотические отношения, когда клетки-хозяева поглощали аэробные бактерии и цианобактерии, но не уничтожали их. В процессе эволюции эти проглоченные бактерии стали более специализированными в своих функциях: аэробные бактерии стали митохондриями, а фотосинтезирующие бактерии - хлоропластами.
Центральная вакуоль
Ранее мы упоминали вакуоли как важные компоненты растительных клеток. Если вы посмотрите на рисунок 1, вы увидите, что каждая растительная клетка имеет большую центральную вакуоль, занимающую большую часть клетки. Центральная вакуоль играет ключевую роль в регулировании концентрации воды в клетках при изменении условий окружающей среды.
В клетках растений жидкость внутри центральной вакуоли обеспечивает тургорное давление, которое представляет собой внешнее давление, создаваемое жидкостью внутри клетки. Вы когда-нибудь замечали, что если вы забудете полить растение на несколько дней, оно увянет? Это связано с тем, что, когда концентрация воды в почве становится ниже, чем концентрация воды в растении, вода перемещается из центральных вакуолей и цитоплазмы в почву.
По мере того как центральная вакуоль сжимается, она оставляет клеточную стенку без поддержки. Эта потеря поддержки клеточных стенок растения приводит к его увяданию. Кроме того, эта жидкость может сдерживать травоядность, поскольку горький вкус содержащихся в ней отходов препятствует употреблению насекомыми и животными. Центральная вакуоль также служит для хранения белков в развивающихся семенных клетках.
Внеклеточный матрикс животных клеток
Рисунок 12. Внеклеточный матрикс состоит из сети веществ, секретируемых клетками.
Большинство клеток животных выделяют материалы во внеклеточное пространство. Основными компонентами этих материалов являются гликопротеины и белковый коллаген. В совокупности эти материалы называются внеклеточным матриксом (рис. 12).
Мало того, что внеклеточный матрикс удерживает клетки вместе, образуя ткань, он также позволяет клеткам внутри ткани связываться друг с другом.
Свертывание крови является примером роли внеклеточного матрикса в клеточной коммуникации. Когда клетки, выстилающие кровеносный сосуд, повреждены, в них появляется белковый рецептор, называемый тканевым фактором.
Когда тканевой фактор связывается с другим фактором внеклеточного матрикса, он заставляет тромбоциты прилипать к стенке поврежденного кровеносного сосуда, стимулирует соседние гладкомышечные клетки кровеносного сосуда к сокращению (тем самым сужая кровеносный сосуд) и инициирует серию шагов, которые стимулируют тромбоциты производить факторы свертывания крови.
Межклеточные соединения
Клетки также могут общаться друг с другом посредством прямого контакта, называемого межклеточными соединениями. Есть некоторые различия в способах, которыми это делают клетки растений и животных. Плазмодесмы представляют собой соединения между растительными клетками, тогда как контакты животных клеток включают плотные и щелевые соединения, а также десмосомы.
Как правило, длинные участки плазматических мембран соседних растительных клеток не могут касаться друг друга, потому что они разделены клеточными стенками, окружающими каждую клетку. Плазмодесмы - это многочисленные каналы, которые проходят между клеточными стенками соседних растительных клеток, соединяя их цитоплазму и позволяя транспортировать сигнальные молекулы и питательные вещества от клетки к клетке (рис. 13а).
Плотное соединение - это водонепроницаемое соединение между двумя соседними клетками животных (рис. 13б). Белки плотно прижимают клетки друг к другу. Эта плотная адгезия предотвращает утечку материалов между ячейками. Плотные соединения обычно находятся в эпителиальной ткани, которая выстилает внутренние органы и полости и составляет большую часть кожи. Например, плотные соединения эпителиальных клеток, выстилающих мочевой пузырь, предотвращают утечку мочи во внеклеточное пространство.
Также только в клетках животных обнаруживаются десмосомы, которые действуют как точечные сварные швы между соседними эпителиальными клетками (рис. 13в). Они удерживают клетки вместе в виде листов в растягивающихся органах и тканях, таких как кожа, сердце и мышцы.
Щелевые соединения в клетках животных похожи на плазмодесмы в клетках растений в том смысле, что они представляют собой каналы между соседними клетками, которые обеспечивают транспорт ионов, питательных веществ и других веществ, которые позволяют клеткам общаться (рис. 13г). Однако структурно щелевые контакты и плазмодесмы различаются.
Рисунок 13. Существует четыре типа соединений между ячейками. (а) Плазмодезма представляет собой канал между клеточными стенками двух соседних растительных клеток. (б) Плотные соединения соединяются с соседними клетками животных. (в) Десмосомы соединяют две клетки животных вместе. (г) Щелевые соединения действуют как каналы между клетками животных.
Таблица 1
Клеточный компонент |
Функция |
Присутствует у Прокариот? |
Присутствует у Животных? |
Присутствует у Растений? |
Плазматическая мембрана |
Отделяет клетку от внешней среды; контролирует прохождение органических молекул, ионов, воды, кислорода и отходов в клетку и из нее | Да | Да | Да |
Цитоплазма |
Обеспечивает структуру ячейки; место многих метаболических реакций; среда, в которой обнаружены органеллы | Да | Да | Да |
Нуклеоид |
Местоположение ДНК | Да | Нет | Нет |
Ядро |
Клеточная органелла, которая содержит ДНК и направляет синтез рибосом и белков | Нет |
Да |
Да |
Рибосома |
Синтез белка |
Да | Да | Да |
Митохондрии |
Продукция АТФ / клеточное дыхание | Нет | Да | Да |
Пероксисомы |
Окисляет и расщепляет жирные кислоты и аминокислоты, а также нейтрализует яды | Нет | Да |
Да |
Пузырьки и вакуоли |
хранение и транспортировка; пищеварительная функция в клетках растений | Нет | Да | Да |
Центросома |
Неопределенная роль в делении клеток в клетках животных; источник микротрубочек в клетках животных | Нет | Да | Нет |
Лизосомы |
переваривание макромолекул; рециркуляция изношенных органелл | Нет | Да | Нет |
Клеточная стенка |
Защита, структурная поддержка и поддержание формы клетки | Да, в первую очередь пептидогликан у бактерий, но не архей | Нет |
Да |
Хлоропласт |
Фотосинтез | Нет | Нет | Да |
Эндоплазматический ретикулум |
Модифицирует белки и синтезирует липиды | Нет | Да | Да |
Аппарат Гольджи |
Изменяет, сортирует, маркирует, упаковывает и распространяет липиды и белки | Нет | Да | Да |
Цитоскелет |
Поддерживает форму клетки, закрепляет органеллы в определенных положениях, позволяет цитоплазме и везикулам перемещаться внутри клетки и позволяет одноклеточным организмам двигаться независимо | Да | Да | Да |
Жгутик |
Передвижение клетки | Несколько |
Несколько | Нет, за исключением некоторых сперматозоидов растений. |
Реснички |
Передвижение клеток, перемещение частиц вдоль внеклеточной поверхности плазматической мембраны и фильтрация | Нет | Несколько | Нет |
Резюме
Подобно прокариотической клетке, эукариотическая клетка имеет плазматическую мембрану, цитоплазму и рибосомы, но эукариотическая клетка обычно больше, чем прокариотическая клетка, имеет истинное ядро (то есть ее ДНК окружена мембраной) и имеет другие мембраны - связанные органеллы, которые позволяют разделить функции.
Плазматическая мембрана представляет собой бислой фосфолипидов, залитый белками. Ядрышко внутри ядра является местом сборки рибосом. Рибосомы находятся в цитоплазме или прикреплены к цитоплазматической стороне плазматической мембраны или эндоплазматического ретикулума. Они осуществляют синтез белка. Митохондрии выполняют клеточное дыхание и производят АТФ. Пероксисомы расщепляют жирные кислоты, аминокислоты и некоторые токсины. Пузырьки и вакуоли - это отсеки для хранения и транспортировки. В клетках растений вакуоли также помогают расщеплять макромолекулы.
Клетки животных также имеют центросому и лизосомы. Центросома состоит из двух тел, центриолей, роль которых в делении клеток неизвестна. Лизосомы - это пищеварительные органеллы клеток животных.
Растительные клетки имеют клеточную стенку, хлоропласты и центральную вакуоль. Стенка растительной клетки, основным компонентом которой является целлюлоза, защищает клетку, обеспечивает структурную поддержку и придает клетке форму. Фотосинтез происходит в хлоропластах. Центральная вакуоль расширяется, увеличивая клетку без необходимости производить больше цитоплазмы.
Эндомембранная система включает ядерную оболочку, эндоплазматический ретикулум, аппарат Гольджи, лизосомы, везикулы, а также плазматическую мембрану. Эти клеточные компоненты работают вместе, чтобы модифицировать, упаковывать, маркировать и транспортировать мембранные липиды и белки.
Цитоскелет состоит из трех разных типов белковых элементов. Микрофиламенты придают клетке жесткость и форму, а также облегчают клеточные движения. Промежуточные нити несут напряжение и закрепляют на месте ядро и другие органеллы. Микротрубочки помогают клетке противостоять сжатию, служат дорожками для моторных белков, которые перемещают везикулы через клетку и тянут реплицированные хромосомы к противоположным концам делящейся клетки. Они также являются структурными элементами центриолей, жгутиков и ресничек.
Клетки животных общаются через свои внеклеточные матрицы и связаны друг с другом плотными контактами, десмосомами и щелевыми контактами. Клетки растений связаны и общаются друг с другом с помощью плазмодесм.
Станьте первым!